iPhone app to calculate RF Link Requirements     
Received in 67 days. Emailed to gsvch@vniiftri.ru and office@vniiftri.ru (I am not sure which one did the trick).
Received in 67 days. Emailed to gsvch@vniiftri.ru and office@vniiftri.ru (I am not sure which one did the trick).
I received this eQSL in 4 days from the Pridnestrovsky Radiotelecentr in Moldova for their transmission of Clandestine station Radio Payam-e-Doost which is directed to Iran, along with a short email from Sergey Omelchenko, Technical Director.
The report was emailed to prtc@idknet.com
Nippon no Kaze is a radio station which transmits from Japan to North Korea, trying to reach Japanese citizens that have been kidnapped by North Korea, and are being held there. It transmits programs of music as well as reading letters from family members. I guess it is considered a Clandestine station.
I received this no data QSL along with a program schedule in 56 days for a report emailed to info@rachi.go.jp
Received for today’s broadcast, thanks to the op for the quick QSL!
Received in 56 days for a report emailed to feedback@hsk9.org and radiothailand@outlook.com (not sure which one did the trick)
A nice fold out QSL, along with a program schedule and history of the station.
Received in 55 days for a report mailed to 12501 Old Columbia Pike, Silver Spring, MD 20904 along with $1 for return postage.
Received in 70 days for a report emailed to winb40th@yahoo.com
Here’s my comparison of the new AirSpyHF+ plus vs the RF Space netSDR. The netSDR is one of the higher end SDRs, often considered the “gold standard”. So how does the AirSpyHF+ match up?
The AirSpyHF+ has two Sigma Delta ADCs with a 36 MSPS rate, an 18 bit DDC (Digital Down Converter) and (near as I can tell) always produces a 768 kHz I/Q stream. The frequency range is 9 kHz to 31 MHz, then 60 to 260 MHz. The selling price is about $199.
The netSDR has a 16 bit A/D, sampling at 80 MHz. The frequency range is 10 kHz to 32 MHz, which can be extended to over 1 GHz with the Downconverter option. I/Q stream rates are up to 2000 kHz. The list price was $1449.
I fed both receivers with the same antenna, my Crossed Parallel Loop, through a splitter. The AirSpyHF+ always samples at a 768 kHz rate, I set the netSDR to a 625 kHz rate, the closest. SdrDx software was used in both cases to make the I/Q recordings. In the case of the AirSpyHF+ I used my own server app to feed the I/Q data to SdrDx. I then recorded the 25 and 19 meter bands, and selected several transmissions to compare. In both cases, mySdrPlayback (an app I wrote) was used to playback the I/Q recordings and convert to WAVE audio, which was then converted to mp3 at a 64 kbit rate. I tried to start each record at about the same time and used the same IF filter width, for fairness.
I also made one set of recordings of a relatively low power pirate radio station that plays Christmas music. I think it’s pushing the Part 15 limits, but still is not very powerful, and is probably about ten miles away.
Many of these recordings are of weak signals. There’s no doubt that most any modern SDR is going to do well with strong stations. A more important question is, how to do they work with weaker signals?
So how do you think each receiver performed? Let me know in the comments.
All India Radio 11560 kHz 1443 UTC
China Radio International 11785 kHz 1143 UTC
Yemen 11860 kHz 1444 UTC
Radio Liberty 11890 kHz 1444 UTC
China Radio International 11920 kHz 1144 UTC
Radio Liberty 15265 kHz 1452 UTC
VOA 15580 kHz 1452 UTC
China Radio International 15160 kHz 1144 UTC
Pirate radio station (about 10 miles away) on 1620 kHz 1536 UTC
The International Space Station is sending SSTV (Slow Scan TV) images on 145.8 MHz today through Friday. Here are two images I just copied from the 1938 UTC (2:48 PM EST) pass.
They were transmitted in PD120 mode, and copied using MultiMode Cocoa software (which I happened to write), on a netSDR receiver connected to a discone antenna (which is many years old, and missing several elements).
SSTV is a method of transmitting a picture using audio tones. It takes about two minutes to send an image. Hence the Slow part of Slow Scan TV.
What does SSTV sound like? Here’s a recording of the audio that produced the second image: http://radiohobbyist.org/blog/mypics/iss_sstv.mp3
Update: The original LZ1AQ preamp has since been replaced with the version made by Everett N4CY. The rotor is now an Alliance HD73
This is the antenna I was planning on building when I ordered the LZ1AQ amplifier (and then built the hula hoop antenna as a quick test of the amp).
There is some technical information on the antenna here, which I won’t repeat, but I’ll summarize the design:
The antenna is made of four square loops. These loops are connected to the LZ1AQ amplifier. So there are eight wires feeding the amplifier, with four pairs of shorted connections, so four wires in total attached to the amp.
The amp is mounted inside of a plastic box, the type used as a junction box for runs of conduit.
The output of the amplifier is shielded ethernet cable, which runs to a control board in the shack. One pair is the signal from the amp, the other wires are used for power, as well as controlling the amp, as it can be switched remotely to use all or some of the loops. I still need to apply silicone sealant to the eight openings where the wires run in, and seal the ethernet cable entry hole with some tape.
I was debating between building a wood or PVC pipe frame. I went with the PVC because I did not want to deal with cutting and gluing the wood, or using nails and brackets and add additional nearby metal objects. I used 1″ PVC pipe.
I first cut the 10 ft PVC pipe pieces into 5 ft lengths and built the loop frame that size. I stood it up, and realized that no, this was not going to last long. So I cut the pipe down from 60″ sides to 40″ sides (close to one meter) and ended up with a much more mechanically stable design.
The wire that forms the loops is attached to the PVC pipe with plastic wire ties. the wire is white, so difficult to see in the photos. It is #10 stranded wire. Ideally you want to use as large a diameter conductor as possible, to reduce the inductance. But you quickly run into two issues: cost, and ease of use. Larger diameter cable was much more expensive. And it was going to be difficult to work with. Copper or aluminum tubing could be used, but they were also more expensive.
The loop is mounted on an old rotor (the one I used with my large resonant loop antenna project, which has been moved to a back burner for now). This antenna is indeed directional, at least on MW. I am able to hear a nearby pirate station on 1620 with it aimed in that direction, while an orthogonal bearing drops it down to just a weak carrier. Meanwhile, on my 670 ft sky loop antenna, I only have a very weak signal.
I’m quite impressed with the performance of the antenna so far. On HF, it does quite well, usually close to the big 670 ft sky loop (my main HF antenna) and sometimes better. Two places it always beats the sky loop are LW and the lower end of the MW band (where the sky loop is too short) and 11 meters (where the sky loop is way too large). It will take some more time to fully test it on a variety of signals.